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Abstract

Real time release (RTR) of products is a new paradigm in the pharmaceutical industry. An RTR system assures that when the last manufacturing
step is passed all the final release criteria are met. Various types of models can be used within the RTR framework. For each RTR system, the
monitoring capability, control capability and RTR capability need to be tested. This paper presents some practical examples within the RTR
framework using near-infrared and process data obtained from a tablet manufacturing process.
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1. Introduction

The publication of the Food and Drug Administration (FDA)
process analytical technology (PAT) initiative [1] has increased
the interest for PAT in the pharmaceutical industry. One of the
principles that are described in the guidance document is real
time release (RTR). Real time release is the ability to evaluate
and ensure the quality of in-process and/or final product based on
process data [1]. In a recent paper [2] we presented a theoretical
framework for RTR, in which four theoretical and distinct dif-
ferent models were suggested for a RTR system. In the present
paper we will demonstrate (practical) examples of these four
model types, using near-infrared and process data from a tablet
manufacturing process.

1.1. Theory of real time release

An RTR system ensures that when the last manufacturing
step is passed all the final release criteria are met. Three basic
questions have to be addressed for such a system:
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e Do we have a (preferably early) warning system if some-
thing is going wrong during manufacturing?—Monitoring
capability.

e Do we have an idea how to adjust the process, and whether it
is possible?—Control capability.

e If we monitor and control our processes, will the final product
meet its quality criteria?—RTR capability.

Different approaches can be used in order to address these
three questions. In this paper the combination of near-infrared
and process data is demonstrated as an example of the theoretical
considerations discussed earlier. Four distinct different models
can be used to evaluate the data (Table 1) i.e. one multivari-
ate statistical process control (MSPC) model and three different
regression models.

1.1.1. Statistical model

In a statistical model, new measurements are compared sta-
tistically to historical data from normal operating conditions
(NOC) batches that provided good quality products. A classical
method which can be used for the statistical monitoring strat-
egy is multivariate statistical process control (MSPC) based on
developing a principal component analysis (PCA) model [3] on
NOC batch data and two control charts for the operator based on
D and SPE statistics [4,5]. Generally speaking the D statistics
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Table 1

Overview of the four different model types

Class Model symbol Description

(A) Statistical model A Statistical model comparing

current process observations
with historical process
observations e.g. multivariate
statistical process control
(MSPC) models

(B) Regression models B.1 Intermediate quality

predictions. A regression model

between predictors and

intermediate quality

parameters. For example, used

for feedback control

B.2 Final quality predictions. A
regression model between
predictors and final quality
parameters at a point where the
entire manufacturing process
has not been completed. For
example, used for feed forward
control

B.3 Final quality predictions. A
regression model between
predictors and final quality
parameters when the entire
manufacturing process has been
completed. Used for RTR

describes the systematic variation in the data while the random
variation is quantified as the squared prediction error (SPE). In
case that a future measurement exceeds the limits in the control
charts the operator can switch to the contribution plot [6] and
identify the cause of the process disturbance.

1.1.2. Regression models

In the occasions where a quality parameter (being it an inter-
mediate property or the final product) is available, a regression
model can be developed. The regression models all relate some
process measurements to a quality measurement at the end (final
product quality) or halfway (intermediate quality parameter) of
the process. The regression models all need a calibration model
to be developed between predictors and a response e.g. quality
parameter. Three different regression models can be made. These
are explained in Table 1. Multivariate regression methods e.g.
PLS [7], multi-block PLS [8], N-way PLS [9] and other regres-
sion techniques can be used to develop models for predicting
intermediate and final product quality parameters.

In the results section examples of these models will be pre-
sented.

2. Experimental
2.1. Tablet manufacturing process
The manufacturing process consisted of several unit opera-

tions which are symbolized in Fig. 1. In the brackets are the sym-
bols which are used in Fig. 1. First all compounds (see Table 2)

R [NR)  (NiR) f

Loss on drying (LOD) Particle size
analysis analysis

Disintegration
analysis

Fig. 1. Overview of unit operations, NIR measurements (symbolized with NIR
boxes) and reference analysis points.

were weighed (wei). Then the active pharmaceutical ingredient
(API), lactose, microcrystalline cellulose, polyvinylpyrrolidone
and crosscarmellose were mixed (mix) in a high shear mixer. A
prepared mixture of polyvinylpyrrolidone and water was added
to the high shear mixer and granulation was performed (gra). The
wet granules were removed and put through a sieve (s) before
added into a fluid bed reactor where the granules were dried
(dry). The dried granules were removed and again put through a
sieve (s) and placed in a drum mixer. Gliding compounds were
added and mixed with the granules (mix;). The finalized gran-
ules were compressed into tablets (tab) with a weight of 180 mg.

2.2. Analysis

During drying, samples were removed from the fluid bed
reactor and loss on drying analysis was performed, using a
moisture analyzer (Mettler Toledo Halogen Moisture Analyzer
HR73). After drying samples were subjected to particle size
analysis using a Malvern Scirocco 2000 laboratory particle
size analyzer. The mean tablet disintegration time was also
determined for each batch using an automated disintegration
testing instrument (Tablet Disintegration System PTZ Auto 2EZ,
Pharma-Test Germany) (average of six tablets). Finally, NIR
analysis was performed extensively throughout the entire pro-
cess which will be described later in this chapter.

2.3. Batch overview
Six calibration batches with varying amount of API, i.e. 0

(placebo), 75, 85, 100, 115 and 125% of API label claim. In the
calibration batches with API amount different from 100% label

Table 2

Batch formulation of main tablet, granulation liquid and glitter compounds

Compound g

Main compounds
API 175
Lactose 966
Microcrystalline cellulose 221
Polyvinylpyrrolidone 84
Crosscarmellose 97

Granulation liquid

Polyvinylpyrrolidone 37

Purified water 372
Glitter compounds

Magnesium stearate 8

Talc 16
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Table 3

Batch overview

Batch Description

Placebo batch A batch without API (also used for calibration)

Calibration batches Five batches with 75, 85, 100, 115 and 125% of

API label claim

DoE batches Mixing Granulation liquid Drying
time (min) flow (ml/min) temperature (°C)
#1 1 30 60
#2 1 30 50
#3 4 30 50
#4 1 90 50
#5 4 90 50
#6 1 30 70
#7 4 90 70
#8 1 90 70
#9 4 30 70
#10 2.5 60 60
#11 2.5 60 60
#12 2.5 60 60

claim the API was interchanged with lactose and microcrys-
talline cellulose keeping the ratio between those two components
constant. Also a set of designed batches (DoE batches, all with
100% API label claim) were manufactured (Table 3). The tablets
of all the calibration and DoE batches were weighing 180 mg. In
the DoE batches three process variables; dry mixing time, granu-
lation liquid flow and drying temperature were varied according
to a full factorial design with two levels. This gave eight batches
plus an extra training batch (#1), and three centre points (#10-12)
in total twelve batches. All calibration batches and the placebo
batch were having a mixing time of 2 min, granulation liquid
flow of 90 ml/min and they were dried at 60 °C.

2.4. NIR analyzer and measurement details

All NIR measurements were performed with a new versatile
FT-NIR Bruker Multi Purpose Analyzer (MPA) (Bruker Optics,
Ettlingen, Germany). With this NIR analyzer the manufacturing
process was investigated at several points (Fig. 1). In Fig. 1, the
NIR measurement points are symbolized with boxes with NIR;
inside. NIR3 is an online measurement of the drying step, while
the other NIR measurements are obtained after the process step
was finished. Table 4 contains details for the NIR measurements
displayed.

Table 4
NIR measurement details

NIR;, NIR; and NIR4 Reflectance measurement with handheld probe. 16

scan pr spectrum. The region from 4000 to

12,500 cm~! was scanned. Resolution 8 cm™!

NIR3 Reflectance measurement with process probe.
Sixty-four scan pr spectrum. The region from 4400
to 12,500 cm™! was scanned. Resolution 8 cm™!

NIRs Transmission measurement. Thirty-two scan pr
spectrum. The region from 5800 to 12,500 cm™!
was scanned. Resolution 8 cm™!

2.5. Data analysis

All data analysis was done using MatLab [10], PLS tool-
box [11] and in-house written m-files. The NIR spectra were
imported into the MatLab environment after acquisition with
the NIR instrument software. In the regression model examples
B.1, B.2 and B.3 is the model performance evaluated by the
root-mean-square error of calibration (RMSEC) and the root-
mean-square error of cross-validation (RMSECV). The merits
are calculated by the formula below:

Z?zl@i - yi)2

n

RMSEC =

where n is the number of calibration samples and y; is the val-
ues of the predicted values when all samples are included in
the model formation. The RMSECYV is calculated as RMSEC,
except the J; are predictions for samples not included in the
model formation.

3. Results and discussion

In this section, four examples of applications in a RTR system
are discussed. Please note that, while the examples were inves-
tigated thoroughly, here we only discuss them briefly, since the
main goal is to show how all these examples fitin a RTR scheme.

3.1. Example 1: statistical model

With this example it is demonstrated how two MSPC models
based on NIR; or NIR, measurements could provide an early
warning of manufacturing problems and separate good batches
from the bad ones. Two DoE batches (#2 and #3) experienced
particle size problems after the drying step and this is referred to
as the manufacturing problem. The DoE batches #1, #4—-6 and
#8—12 had no manufacturing problems; these are referred to as
normal operating condition (NOC) batches. NIR spectra from
the NOC batches were used to develop the MSPC control charts.
The DoE batches #2 and #3 with manufacturing problems and #7
without manufacturing problems were then used to validate the
MSPC control charts. After drying DoE batch #2 granules had
a large proportion of fines and a low average particle size while
DoE batch #3 granules consisted of coarse particles. DoE batch
#7 was known for having a particle size distribution similar to the
other nine DoE batches i.e. good particle quality. These batches
were called validation batches. Validation of MSPC models is
done by showing that observations from batches with manufac-
turing problems are flagged above the control limits in the MSPC
charts while observations from batches without manufacturing
problems are below the control limits. It is an essential necessity
for development and validation of a MSPC model that data exist
for both NOC batches and batches with quality defects.

The first MSPC model used the raw NIR; spectra as input.
The NIR; spectra from the NOC batches (on average fourteen
spectra from each batch) were used in total 119 spectra. The
spectra were collected in a 119 x 2281 matrix i.e. 119 spectra
with 2281 spectral data points in each spectrum. The spectra
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were mean centred and a PCA model was fitted to the spectra.
The 95% confidence limit for the D statistic was calculated and
used as warning limit in the D-chart [4]. For the residuals the
95% confidence limit was calculated and used as warning limit
in the SPE-chart [12]. Now the NIR spectra from the validation
batches were mean centred and projected on the PCA model;
their D statistics were plotted in the D-chart. The squared resid-
uals were also calculated and plotted in the SPE-chart (Fig. 2).
Fifteen spectra from DoE #2 (symbolized with stars), 13 spectra
from DoE #3 (symbolized with triangles) and fourteen spectra
from DoE #7 (symbolized with circles) are depicted in Fig. 2.
These spectra are from independent measurement from different
position in the powder mixture after the mixing step. Thus one
should consider all the spectra of one batch as a whole. Accord-
ing to the control charts in Fig. 2, batches DoE #3 and DoE #7
have problems while batch DoE #2 seems to be ok (except for
the sample 14 that just exceeds the SPE limit. Various ways of
pre-processing and wavelength selection were tried out in order
to see if a better result could be obtained but without success.
The conclusion was that a MSPC model with NIR; was not good
for identification of the two batches with quality defects.

Therefore an MSPC model and control charts were developed
with NIR; as input. Again various pre-processing methods and
wavelength selection were tried out and the best results obtained
with Ist derivative and the wavelength region from 4700 to
5700 cm™!. With the spectra from the NOC batches the con-
trol limits were developed for the charts. Then the D and SPE
statistics of the validation spectra were calculated and plotted in
the control charts (Fig. 3). Almost all data points from DoE #2
and DoE #3 spectra were flagged out in either the D or the SPE
charts. All DoE #7 data points were below the control limits as
expected (circles in Fig. 3).

This demonstrated how early warning and monitoring capa-
bility of manufacturing problems was achieved with a statistical
model using NIR, data. Secondly, it was found that the granu-
lation step is important when it comes to particle size quality.
The next step would be to investigate whether the granulation
process could be controlled to get consistent particle size quality.
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Fig. 2. The NIR; data from the validation batches plotted in the D-chart and
the SPE-chart. DoE #2 observations are symbolized with stars, DoE #3 with
triangles and DoE #7 with circles. The dotted lines in both charts are the 95%
confidence limit.
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Fig. 3. The NIR; data from the validation batches plotted in the D-chart and
the SPE-chart. DoE #2 observations are symbolized with stars, DoE #3 with
triangles and DoE #7 with circles. The dotted lines in both charts are the 95%
confidence limit.

3.2. Example 2: regression model B.1 (local prediction of
quality)

Along the manufacturing chain several intermediate quality
characteristics can be monitored. In some cases it is of vital
importance that the intermediate quality is good in order to con-
tinue to the next process step and ultimately this will benefit a
RTR system. Monitoring the water content during drying is an
example of monitoring a local quality characteristic. The pur-
pose of the drying process is to remove excess water in the
granules and produce dried granules that are easily compressed
into tablets. If the water content is not within a certain range,
compression problems will occur and it might be necessary to
discard the entire batch.

During drying in the fluid bed reactor, NIR spectra were auto-
matically collected every half minute, with a process reflectance
probe inserted in the reactor. Powder samples were removed
from the fluid bed reactor during the drying from a sample
port located in close proximity to the NIR probe port. The
water amount in the samples was determined as % weight loss-
on-drying (LOD) The spectrum that was recorded during the
removal of the sample was assigned to the corresponding LOD
reference value. A PLS model with three latent variables was
developed using 28 calibration spectra representing all DoE
batches. Many different pre-processing methods were investi-
gated and also wavelength selection routines were applied in
order to minimize non-relevant spectral variation and improve
model statistics. As pre-processing method Savitzky—Golay 1st
derivative with a second order polynomial fit using 17 spec-
tral points was selected. The combined wavelength regions
4597-5450cm™! and 7500-12,500cm™! were used. These
wavelength regions cover the water bands in the combinational
and second overtone region in the NIR spectra. The first three
latent variables explained 99.08% of the variation in X and
98.70% of Y variation. The cross validated predictions are pre-
sented in Fig. 4.

The NIRj3 spectra from the DoE batches were applied to the
PLS model and drying (LOD) curves were predicted. Exam-
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Fig. 4. Calibration line for three LV PLS model. Measured LOD values vs.
predicted values from cross validation. The dotted line indicates perfect fit.
With three LV the RMSEC was 0.37 and the RMSECV was 0.53.

ples of the drying curves from two DoE batches dried at 50 and
70°C, respectively, are shown in Fig. 5. Both batches showed a
steep decline in LOD the first five minutes because of high water
evaporation caused by the airflow which always was 100 m3/h
the first 5 min and thereafter lowered to 50 m3/h for the remain-
ing drying. The drying of both batches was terminated when
the product temperature reached 34 °C but due to the different
drying temperature, the drying times differed from 23 to 38 min.
Both drying curves showed a slight increase of the LOD near the
end of the drying period. The increase can be explained with an
increased diffusion of water from the core to the surface of the
granules during what is known as the equilibrium period [13]
where the granule temperature is increasing. The phenomenon
is a process signature and can be utilized into end-point con-
trol of the drying process, which is the natural extension of this
example of in-line local quality predictions.

With this example it was demonstrated how a regression
model between in-line NIR spectra and LOD provided moni-
toring capability. Secondly, it is also possible to implement the
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Fig. 5. Drying curves for two DoE batches with drying temperatures 50 °C (Q)
and 70 °C (V). Both batches were granulated with a granulation liquid flow of
90 ml/min.

regression model for real-time control of the drying time, which
can provide control capability of the process.

3.3. Example 3: regression model B.2 (forecasting final
quality and process control)

In any manufacturing system there will be variation in the pro-
cess input e.g. raw material variation, environmental factors etc.
which all affect the final quality, unless the manufacturing pro-
cess can comprehend these variations or process control exists
to minimize the influence of input variation. In the following
it will be demonstrated how to develop a feed forward process
control tool with regression models between process variables,
process measurements and a final quality characteristic i.e. the
mean disintegration time for the tablets.

In each batch the disintegration time was determined for six
tablets. The average disintegration time (dis7) of six tablets was
used as final quality variable. The average disintegration time
ranged from 120 to 248 s. The standard deviation on the average
disintegration time was approximately 30s. Two PLS models
were developed (models I and II) using process variables and
NIR spectra as predictors. The NIR spectra consisted of more
then 2250 spectral variables and in order to perform data fusion
between a few process variables and thousands of spectral vari-
ables, the NIR spectra were first decomposed using PCA and the
mean centred scores were then fused with the process variables.

Then the scores and process variables were auto scaled and
a PLS model established between the predictors and the mean
disintegration time.

The predictors for model I were; mixing time (mix), scores
from the first three PCs of the PCA model of average NIR spec-
trum from the mixing (NIR1*) and the granulation liquid flow
(gra) in total five predictors. For model II, the predictors also
included the first three scores from three PCA models of (a) the
average NIR spectrum of the granulation (NIR2%*), (b) the last
spectrum from the drying process (NIR3*) and (c) the average
NIR spectrum from the glidant mixing step (NIR4*). Also the
process variables; drying temperature (air7), drying time (dry-
Time) and upper punch force during tabletting (punF) were used
as predictors in model II. The predictors and models are depicted
in Fig. 6.

Using the data from the twelve DoE batches two PLS models
were developed. The models statistics are listed in Table 5. Leave
one out cross validation (LOO CV) was used given the limited

' He

process step dry mixing ~ granulation drying  glidants adde fiing
Controlled variables mix gran airT dryTime punF

model | model If disT
Quality variables NIR1* NIR2* NIR3* NIR4*

Fig. 6. Overview of controlled and quality variables used for modelling. The
controlled variables are; mixing time of the dry powders (mix), the granulation
liquid flow (gran), the air temperature in the fluid bed (air7), the drying time
in the fluid bed (dryTime) and the average upper punch force during tabletting
(punF). The average NIR measurements after various process steps are denoted
NIR* 1-4. The quality variable is the mean disintegration time of the final tablets
(disT).
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Table 5
Model statistics for PLS models I and II
LV# Model I Model 1T
Expl. X variation Expl. Y variation RMSEC RMSECV Expl. X variation Expl. Y variation RMSEC RMSECV
1 26.7 61.5 28.7 472 22.8 85.4 17.7 35.0
2 515 66.1 27.0 50.4 35.4 924 12.8 355
3 73.3 67.3 26.5 55.8 50.9 96.5 8.7 38.1
4 81.5 67.4 26.5 60.1 64.3 98.2 6.2 349
5 100.0 67.4 26.4 60.6 76.5 98.8 5.0 33.8
6 86.0 99.3 3.8 335

number of data points. The root mean squared error obtained
from cross-validation (RMSECYV) of model II was 35.0 with
one latent variable (LV) and 85.4% of the Y variation explained
compared to 61.5% for model 1. So by adding more process
information the prediction error decreased and a better model
was established. The prediction error of model II was also close
to the standard deviation for the reference analysis (approxi-
mately 30 s) so it might be difficult to improve the model further
using the existing data. For both models only one PLS compo-
nent was used. The b coefficients for the models are displayed
in Figs. 9 and 11.

The measured versus predicted mean disintegration time for
model II is depicted in Fig. 7. The prediction error was in some
cases high which might be owed to the relative high standard
deviation of the mean disintegration time. Secondly is the refer-
ence analysis performed on only a fraction of the total number
of tablets produced in each batch. Generally, a larger number
of batches and tablets pr batch should be used and secondly
the experimental design space extended further in order to find
a larger range of disintegration times. It is assumed that the
correlation between the disintegration time and model predic-
tions could then be improved. Also maybe the addition of other
predictors e.g. raw material attributes could improve model pre-
dictions.

With the models, suggestions for feed forward process control
can now be derived.
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Fig. 7. Measured vs. predicted mean disintegration time for PLS model II. The
values from calibration are symbolized with circles and the values from LOO
CV are symbolized with stars. The dotted line symbolizes perfect fit.

In Fig. 8 this is demonstrated with model I. Model I can be
used by the operator just before the granulation is started and the
operator wants to know how to set the granulation liquid flow. By
using the mixing times and NIR measurements from the DoE
batches and then inserting hypothetical values for granulation
liquid flow from 30 to 90 ml/min, hypothetical mean disintegra-
tion times were then predicted with model I. The results showed
that by increasing the granulation liquid flow the disintegration
time would decrease. This could of course have been directly
obtained from the negative b coefficient for granulation liquid
flow and with model I the effect can be quantified.

With the model, the operator now has a process control tool
to set the granulation liquid flow after the mixing step in order
to control disintegration time (Fig. 9).

Before the operator starts the tabletting model II can be used
to set the required upper punch force, in order to achieve a certain
mean disintegration time of the final tablets. This was demon-
strated by inserting different values for punch force in model
II. The resulting predicted disintegration times are depicted in
Fig. 10.

The results from this example are only indicative since more
data should be available for a thorough treatment. Neverthe-
less does the example serve to demonstrate how to develop
feed forward process control tools with regression models. The
correlation between process variables and the final quality char-
acteristic was illustrated by the b coefficients which showed ‘in
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Fig. 8. Process control chart for setting of granulation liquid flow using model I
at the first decision point. The DoE batches with mix time 1 min are symbolized
with stars, 2.5 min are symbolized with triangles and 4 min with circles.
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NIR1*

Fig. 9. The b coefficients for PLS model I.

which way to turn the knob’ in order to force the direction of the
quality parameter. The regression models could then be used to
quantify the effect of ‘the turn’. The results demonstrated how
to get control capability.

3.4. Example 4: regression model B.3 (final quality
predictions)

The most important quality characteristics for the customer
are these of the final drug product. Measurements of final quality
characteristics when the drug product leaves the manufacturing
line in real-time or near real time would be an example of RTR
(Fig. 11).

The content of active pharmaceutical ingredient (API) in the
final tablets is a major quality parameter. Traditional quality
control is performed on a small set of tablets i.e. 10 to 30 tablets
in distant laboratories using time consuming analysis methods
e.g. HPLC. This means that the batch is quarantined for 2-3
weeks before the analysis result is ready and the batch can be
released to market. Secondly by only analyzing a small number
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Fig. 11. The b coefficients for PLS model II.

of samples there is an increased risk that quality defects are not
detected.

As an example of near real time quality control of the API
content in individual tablets, a regression model was developed
between NIR transmission spectra of the final tablets (NIRs)
and the API content. For each of the six calibration batches
(Table 3) one calibration spectrum was made by averaging of
120 measured tablet spectra from each calibration batch. Then
each calibration spectrum was assigned a reference value which
was the average API content in the corresponding calibration
batch and finally a regression model was build between the
average calibration spectra and their reference values (which
here was of course the weighing of the different compounds).
This calibration method does not rely on reference analysis and
the assumption for using this method is that by measuring a
large number of samples from a batch the average content in all
samples approach the average content of the entire batch.

A PLS regression model with one PLS component was con-
structed. A very low RMSECV of 0.066 and a correlation
coefficient of 0.9999 were obtained. Fig. 12 shows the cross-
validated predictions of mg API/tablets. By visual inspection of
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Fig. 12. PLS model with one component using the wavelength region from 7500
to 12,500cm™!. The predicted values from cross validation, of the calibration
spectra vs. their reference values. The R2i50.9999; the RMSECV is 0.066 which
is 0.3%.
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Table 6

Assay predictions (mg API/tablet) for 12 DoE batches

DoE # Mean Variance

Start Mid End Start Mid End

1 19.2 19.2 19.1 0.03 0.02 0.03
2 19.4 19.4 194 0.03 0.02 0.02
3 19.6 19.5 19.6 0.03 0.03 0.04
4 19.6 19.6 19.6 0.03 0.03 0.02
5 19.6 19.7 19.8 0.04 0.02 0.04
6 19.5 19.5 19.5 0.03 0.04 0.02
7 19.8 19.5 19.5 0.05 0.06 0.02
8 19.6 19.6 19.5 0.02 0.02 0.03
9 19.4 19.4 19.5 0.04 0.02 0.01

10 19.6 19.7 19.6 0.02 0.03 0.01

11 19.6 19.5 19.4 0.02 0.03 0.03

12 19.5 19.6 19.5 0.02 0.04 0.03

The mean and variance are calculated for 30 tablets from the start, mid and end
of tabletting process. The target content is 19.7 mg API/tablet.

the regression vector, the pre-processed calibration spectra and
the pure API spectrum it was evident that it was the variation of
the API that was modelled.

From each of the DoE batches 90 tablets were measured with
transmission NIR. The 90 tablets were removed from the tablet-
ting process in the following way; 30 tablets from the start, 30
tablets from the mid and 30 tablets from the end of the tabletting
process. With the PLS model the assay (mg/tablet) was predicted
in all tablet samples. The average and variance of the 30 assay
predictions from the start, mid and end are listed for all DoE
batches (Table 6). It was discovered that there was very little
variation in the API content.

Though the API content was not varying much, few batches
showed some variation in the API content. As an example the
assay content of the 90 tablets from DoE batch #7 is depicted in
Fig. 13. It was discovered that there was generally more API in
the tablets in the beginning of the tabletting process compared
to the mid and end of the process. Also the variance was higher
in the start of the process. This behaviour would be difficult to
identify and control if only a few samples were analyzed using
classical methods. The reason for the changes in API content

20.5¢ +

20F
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Fig. 13. Ninety assay predictions from DoE batch no. 7, 30 from start (star),
mid (triangle) and end (circle), respectively. The average API content was higher
in the first part of the tabletting compared to the mid and end of the tabletting
process.

during the tabletting process could be explained by a mild seg-
regation of the powder granules when flowing into the tabletting
machine.

The last example showed how RTR capability of the tablets
could be achieved. Secondly, by analyzing a large number of
samples trends in the process were discovered. This would be
difficult using classical sampling schemes were only a few sam-
ples are analyzed.

4. Conclusions

An approach to RTR has been shown in this paper. Start-
ing with the three levels of capability, each process step can
be evaluated for its appropriateness in the RTR system. For
a pharmaceutical tabletting process, examples for monitoring
capability, control capability and RTR capability are provided.
Different types of models are used to provide early warnings of
future manufacturing problems.

Four different models were demonstrated using NIR and
process data. First a MSPC model of NIR spectra from the
granulation step, demonstrated how an early warning of future
manufacturing problems could be given. In the second exam-
ple (local quality predictions) a quantitative NIR model for
in-line prediction of loss-on-drying in the drying process was
demonstrated. The example showed monitoring capability and
suggestion for process control was discussed.

For an RTR system it is important that the manufacturing
process and process control can minimize the effect of input
variation to the process that affects the final quality. In the third
example (forecasting final quality and process control) it was
tried out to establish process control models and forecast the
disintegration time of the final tablets.

The last regression example (final quality predictions)
demonstrated how the API content in individual tablets can be
determined with transmission NIR which can be applied at-line
the tabletting process.
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