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bstract

Real time release (RTR) of products is a new paradigm in the pharmaceutical industry. An RTR system assures that when the last manufacturing
tep is passed all the final release criteria are met. Various types of models can be used within the RTR framework. For each RTR system, the

onitoring capability, control capability and RTR capability need to be tested. This paper presents some practical examples within the RTR

ramework using near-infrared and process data obtained from a tablet manufacturing process.
2006 Elsevier B.V. All rights reserved.
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. Introduction

The publication of the Food and Drug Administration (FDA)
rocess analytical technology (PAT) initiative [1] has increased
he interest for PAT in the pharmaceutical industry. One of the
rinciples that are described in the guidance document is real
ime release (RTR). Real time release is the ability to evaluate
nd ensure the quality of in-process and/or final product based on
rocess data [1]. In a recent paper [2] we presented a theoretical
ramework for RTR, in which four theoretical and distinct dif-
erent models were suggested for a RTR system. In the present
aper we will demonstrate (practical) examples of these four
odel types, using near-infrared and process data from a tablet
anufacturing process.

.1. Theory of real time release
An RTR system ensures that when the last manufacturing
tep is passed all the final release criteria are met. Three basic
uestions have to be addressed for such a system:
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E-mail address: westerhuis@science.uva.nl (J.A. Westerhuis).
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Do we have a (preferably early) warning system if some-
thing is going wrong during manufacturing?—Monitoring
capability.
Do we have an idea how to adjust the process, and whether it
is possible?—Control capability.
If we monitor and control our processes, will the final product
meet its quality criteria?—RTR capability.

Different approaches can be used in order to address these
hree questions. In this paper the combination of near-infrared
nd process data is demonstrated as an example of the theoretical
onsiderations discussed earlier. Four distinct different models
an be used to evaluate the data (Table 1) i.e. one multivari-
te statistical process control (MSPC) model and three different
egression models.

.1.1. Statistical model
In a statistical model, new measurements are compared sta-

istically to historical data from normal operating conditions
NOC) batches that provided good quality products. A classical
ethod which can be used for the statistical monitoring strat-
gy is multivariate statistical process control (MSPC) based on
eveloping a principal component analysis (PCA) model [3] on
OC batch data and two control charts for the operator based on
and SPE statistics [4,5]. Generally speaking the D statistics
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dx.doi.org/10.1016/j.jpba.2006.10.037
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Table 1
Overview of the four different model types

Class Model symbol Description

(A) Statistical model A Statistical model comparing
current process observations
with historical process
observations e.g. multivariate
statistical process control
(MSPC) models

(B) Regression models B.1 Intermediate quality
predictions. A regression model
between predictors and
intermediate quality
parameters. For example, used
for feedback control

B.2 Final quality predictions. A
regression model between
predictors and final quality
parameters at a point where the
entire manufacturing process
has not been completed. For
example, used for feed forward
control

B.3 Final quality predictions. A
regression model between
predictors and final quality
parameters when the entire
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Six calibration batches with varying amount of API, i.e. 0
(placebo), 75, 85, 100, 115 and 125% of API label claim. In the
calibration batches with API amount different from 100% label

Table 2
Batch formulation of main tablet, granulation liquid and glitter compounds

Compound g

Main compounds
API 175
Lactose 966
Microcrystalline cellulose 221
Polyvinylpyrrolidone 84
Crosscarmellose 97

Granulation liquid
Polyvinylpyrrolidone 37
Purified water 372
manufacturing process has been
completed. Used for RTR

escribes the systematic variation in the data while the random
ariation is quantified as the squared prediction error (SPE). In
ase that a future measurement exceeds the limits in the control
harts the operator can switch to the contribution plot [6] and
dentify the cause of the process disturbance.

.1.2. Regression models
In the occasions where a quality parameter (being it an inter-

ediate property or the final product) is available, a regression
odel can be developed. The regression models all relate some

rocess measurements to a quality measurement at the end (final
roduct quality) or halfway (intermediate quality parameter) of
he process. The regression models all need a calibration model
o be developed between predictors and a response e.g. quality
arameter. Three different regression models can be made. These
re explained in Table 1. Multivariate regression methods e.g.
LS [7], multi-block PLS [8], N-way PLS [9] and other regres-
ion techniques can be used to develop models for predicting
ntermediate and final product quality parameters.

In the results section examples of these models will be pre-
ented.

. Experimental

.1. Tablet manufacturing process
The manufacturing process consisted of several unit opera-
ions which are symbolized in Fig. 1. In the brackets are the sym-
ols which are used in Fig. 1. First all compounds (see Table 2)

G

ig. 1. Overview of unit operations, NIR measurements (symbolized with NIR
oxes) and reference analysis points.

ere weighed (wei). Then the active pharmaceutical ingredient
API), lactose, microcrystalline cellulose, polyvinylpyrrolidone
nd crosscarmellose were mixed (mix1) in a high shear mixer. A
repared mixture of polyvinylpyrrolidone and water was added
o the high shear mixer and granulation was performed (gra). The
et granules were removed and put through a sieve (s) before

dded into a fluid bed reactor where the granules were dried
dry). The dried granules were removed and again put through a
ieve (s) and placed in a drum mixer. Gliding compounds were
dded and mixed with the granules (mix2). The finalized gran-
les were compressed into tablets (tab) with a weight of 180 mg.

.2. Analysis

During drying, samples were removed from the fluid bed
eactor and loss on drying analysis was performed, using a
oisture analyzer (Mettler Toledo Halogen Moisture Analyzer
R73). After drying samples were subjected to particle size

nalysis using a Malvern Scirocco 2000 laboratory particle
ize analyzer. The mean tablet disintegration time was also
etermined for each batch using an automated disintegration
esting instrument (Tablet Disintegration System PTZ Auto 2EZ,
harma-Test Germany) (average of six tablets). Finally, NIR
nalysis was performed extensively throughout the entire pro-
ess which will be described later in this chapter.

.3. Batch overview
litter compounds
Magnesium stearate 8
Talc 16
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Table 3
Batch overview

Batch Description

Placebo batch A batch without API (also used for calibration)
Calibration batches Five batches with 75, 85, 100, 115 and 125% of

API label claim

DoE batches Mixing
time (min)

Granulation liquid
flow (ml/min)

Drying
temperature (◦C)

#1 1 30 60
#2 1 30 50
#3 4 30 50
#4 1 90 50
#5 4 90 50
#6 1 30 70
#7 4 90 70
#8 1 90 70
#9 4 30 70

#10 2.5 60 60
#
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11 2.5 60 60
12 2.5 60 60

laim the API was interchanged with lactose and microcrys-
alline cellulose keeping the ratio between those two components
onstant. Also a set of designed batches (DoE batches, all with
00% API label claim) were manufactured (Table 3). The tablets
f all the calibration and DoE batches were weighing 180 mg. In
he DoE batches three process variables; dry mixing time, granu-
ation liquid flow and drying temperature were varied according
o a full factorial design with two levels. This gave eight batches
lus an extra training batch (#1), and three centre points (#10–12)
n total twelve batches. All calibration batches and the placebo
atch were having a mixing time of 2 min, granulation liquid
ow of 90 ml/min and they were dried at 60 ◦C.

.4. NIR analyzer and measurement details

All NIR measurements were performed with a new versatile
T-NIR Bruker Multi Purpose Analyzer (MPA) (Bruker Optics,
ttlingen, Germany). With this NIR analyzer the manufacturing
rocess was investigated at several points (Fig. 1). In Fig. 1, the
IR measurement points are symbolized with boxes with NIRi
nside. NIR3 is an online measurement of the drying step, while
he other NIR measurements are obtained after the process step
as finished. Table 4 contains details for the NIR measurements
isplayed.

able 4
IR measurement details

IR1, NIR2 and NIR4 Reflectance measurement with handheld probe. 16
scan pr spectrum. The region from 4000 to
12,500 cm−1 was scanned. Resolution 8 cm−1

IR3 Reflectance measurement with process probe.
Sixty-four scan pr spectrum. The region from 4400
to 12,500 cm−1 was scanned. Resolution 8 cm−1

IR5 Transmission measurement. Thirty-two scan pr
spectrum. The region from 5800 to 12,500 cm−1

was scanned. Resolution 8 cm−1
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.5. Data analysis

All data analysis was done using MatLab [10], PLS tool-
ox [11] and in-house written m-files. The NIR spectra were
mported into the MatLab environment after acquisition with
he NIR instrument software. In the regression model examples
.1, B.2 and B.3 is the model performance evaluated by the

oot-mean-square error of calibration (RMSEC) and the root-
ean-square error of cross-validation (RMSECV). The merits

re calculated by the formula below:

MSEC =
√∑n

i=1(ŷi − yi)2

n

here n is the number of calibration samples and ŷi is the val-
es of the predicted values when all samples are included in
he model formation. The RMSECV is calculated as RMSEC,
xcept the ŷi are predictions for samples not included in the
odel formation.

. Results and discussion

In this section, four examples of applications in a RTR system
re discussed. Please note that, while the examples were inves-
igated thoroughly, here we only discuss them briefly, since the

ain goal is to show how all these examples fit in a RTR scheme.

.1. Example 1: statistical model

With this example it is demonstrated how two MSPC models
ased on NIR1 or NIR2 measurements could provide an early
arning of manufacturing problems and separate good batches

rom the bad ones. Two DoE batches (#2 and #3) experienced
article size problems after the drying step and this is referred to
s the manufacturing problem. The DoE batches #1, #4–6 and
8–12 had no manufacturing problems; these are referred to as
ormal operating condition (NOC) batches. NIR spectra from
he NOC batches were used to develop the MSPC control charts.
he DoE batches #2 and #3 with manufacturing problems and #7
ithout manufacturing problems were then used to validate the
SPC control charts. After drying DoE batch #2 granules had
large proportion of fines and a low average particle size while
oE batch #3 granules consisted of coarse particles. DoE batch
7 was known for having a particle size distribution similar to the
ther nine DoE batches i.e. good particle quality. These batches
ere called validation batches. Validation of MSPC models is
one by showing that observations from batches with manufac-
uring problems are flagged above the control limits in the MSPC
harts while observations from batches without manufacturing
roblems are below the control limits. It is an essential necessity
or development and validation of a MSPC model that data exist
or both NOC batches and batches with quality defects.

The first MSPC model used the raw NIR1 spectra as input.

he NIR1 spectra from the NOC batches (on average fourteen
pectra from each batch) were used in total 119 spectra. The
pectra were collected in a 119 × 2281 matrix i.e. 119 spectra
ith 2281 spectral data points in each spectrum. The spectra
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ere mean centred and a PCA model was fitted to the spectra.
he 95% confidence limit for the D statistic was calculated and
sed as warning limit in the D-chart [4]. For the residuals the
5% confidence limit was calculated and used as warning limit
n the SPE-chart [12]. Now the NIR1 spectra from the validation
atches were mean centred and projected on the PCA model;
heir D statistics were plotted in the D-chart. The squared resid-
als were also calculated and plotted in the SPE-chart (Fig. 2).
ifteen spectra from DoE #2 (symbolized with stars), 13 spectra
rom DoE #3 (symbolized with triangles) and fourteen spectra
rom DoE #7 (symbolized with circles) are depicted in Fig. 2.
hese spectra are from independent measurement from different
osition in the powder mixture after the mixing step. Thus one
hould consider all the spectra of one batch as a whole. Accord-
ng to the control charts in Fig. 2, batches DoE #3 and DoE #7
ave problems while batch DoE #2 seems to be ok (except for
he sample 14 that just exceeds the SPE limit. Various ways of
re-processing and wavelength selection were tried out in order
o see if a better result could be obtained but without success.
he conclusion was that a MSPC model with NIR1 was not good

or identification of the two batches with quality defects.
Therefore an MSPC model and control charts were developed

ith NIR2 as input. Again various pre-processing methods and
avelength selection were tried out and the best results obtained
ith 1st derivative and the wavelength region from 4700 to
700 cm−1. With the spectra from the NOC batches the con-
rol limits were developed for the charts. Then the D and SPE
tatistics of the validation spectra were calculated and plotted in
he control charts (Fig. 3). Almost all data points from DoE #2
nd DoE #3 spectra were flagged out in either the D or the SPE
harts. All DoE #7 data points were below the control limits as
xpected (circles in Fig. 3).

This demonstrated how early warning and monitoring capa-
ility of manufacturing problems was achieved with a statistical

odel using NIR2 data. Secondly, it was found that the granu-

ation step is important when it comes to particle size quality.
he next step would be to investigate whether the granulation
rocess could be controlled to get consistent particle size quality.

ig. 2. The NIR1 data from the validation batches plotted in the D-chart and
he SPE-chart. DoE #2 observations are symbolized with stars, DoE #3 with
riangles and DoE #7 with circles. The dotted lines in both charts are the 95%
onfidence limit.
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he SPE-chart. DoE #2 observations are symbolized with stars, DoE #3 with
riangles and DoE #7 with circles. The dotted lines in both charts are the 95%
onfidence limit.

.2. Example 2: regression model B.1 (local prediction of
uality)

Along the manufacturing chain several intermediate quality
haracteristics can be monitored. In some cases it is of vital
mportance that the intermediate quality is good in order to con-
inue to the next process step and ultimately this will benefit a
TR system. Monitoring the water content during drying is an
xample of monitoring a local quality characteristic. The pur-
ose of the drying process is to remove excess water in the
ranules and produce dried granules that are easily compressed
nto tablets. If the water content is not within a certain range,
ompression problems will occur and it might be necessary to
iscard the entire batch.

During drying in the fluid bed reactor, NIR spectra were auto-
atically collected every half minute, with a process reflectance

robe inserted in the reactor. Powder samples were removed
rom the fluid bed reactor during the drying from a sample
ort located in close proximity to the NIR probe port. The
ater amount in the samples was determined as % weight loss-
n-drying (LOD) The spectrum that was recorded during the
emoval of the sample was assigned to the corresponding LOD
eference value. A PLS model with three latent variables was
eveloped using 28 calibration spectra representing all DoE
atches. Many different pre-processing methods were investi-
ated and also wavelength selection routines were applied in
rder to minimize non-relevant spectral variation and improve
odel statistics. As pre-processing method Savitzky–Golay 1st

erivative with a second order polynomial fit using 17 spec-
ral points was selected. The combined wavelength regions
597–5450 cm−1 and 7500–12,500 cm−1 were used. These
avelength regions cover the water bands in the combinational

nd second overtone region in the NIR spectra. The first three
atent variables explained 99.08% of the variation in X and

8.70% of Y variation. The cross validated predictions are pre-
ented in Fig. 4.

The NIR3 spectra from the DoE batches were applied to the
LS model and drying (LOD) curves were predicted. Exam-
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ig. 4. Calibration line for three LV PLS model. Measured LOD values vs.
redicted values from cross validation. The dotted line indicates perfect fit.
ith three LV the RMSEC was 0.37 and the RMSECV was 0.53.

les of the drying curves from two DoE batches dried at 50 and
0 ◦C, respectively, are shown in Fig. 5. Both batches showed a
teep decline in LOD the first five minutes because of high water
vaporation caused by the airflow which always was 100 m3/h
he first 5 min and thereafter lowered to 50 m3/h for the remain-
ng drying. The drying of both batches was terminated when
he product temperature reached 34 ◦C but due to the different
rying temperature, the drying times differed from 23 to 38 min.
oth drying curves showed a slight increase of the LOD near the
nd of the drying period. The increase can be explained with an
ncreased diffusion of water from the core to the surface of the
ranules during what is known as the equilibrium period [13]
here the granule temperature is increasing. The phenomenon

s a process signature and can be utilized into end-point con-
rol of the drying process, which is the natural extension of this
xample of in-line local quality predictions.
With this example it was demonstrated how a regression
odel between in-line NIR spectra and LOD provided moni-

oring capability. Secondly, it is also possible to implement the

ig. 5. Drying curves for two DoE batches with drying temperatures 50 ◦C (©)
nd 70 ◦C (�). Both batches were granulated with a granulation liquid flow of
0 ml/min.

a
s
N
p
T
a
i

w
o

F
c
l
i
(
N
(

d Biomedical Analysis 43 (2007) 1297–1305 1301

egression model for real-time control of the drying time, which
an provide control capability of the process.

.3. Example 3: regression model B.2 (forecasting final
uality and process control)

In any manufacturing system there will be variation in the pro-
ess input e.g. raw material variation, environmental factors etc.
hich all affect the final quality, unless the manufacturing pro-

ess can comprehend these variations or process control exists
o minimize the influence of input variation. In the following
t will be demonstrated how to develop a feed forward process
ontrol tool with regression models between process variables,
rocess measurements and a final quality characteristic i.e. the
ean disintegration time for the tablets.
In each batch the disintegration time was determined for six

ablets. The average disintegration time (disT) of six tablets was
sed as final quality variable. The average disintegration time
anged from 120 to 248 s. The standard deviation on the average
isintegration time was approximately 30 s. Two PLS models
ere developed (models I and II) using process variables and
IR spectra as predictors. The NIR spectra consisted of more

hen 2250 spectral variables and in order to perform data fusion
etween a few process variables and thousands of spectral vari-
bles, the NIR spectra were first decomposed using PCA and the
ean centred scores were then fused with the process variables.
Then the scores and process variables were auto scaled and

PLS model established between the predictors and the mean
isintegration time.

The predictors for model I were; mixing time (mix), scores
rom the first three PCs of the PCA model of average NIR spec-
rum from the mixing (NIR1*) and the granulation liquid flow
gra) in total five predictors. For model II, the predictors also
ncluded the first three scores from three PCA models of (a) the
verage NIR spectrum of the granulation (NIR2*), (b) the last
pectrum from the drying process (NIR3*) and (c) the average
IR spectrum from the glidant mixing step (NIR4*). Also the
rocess variables; drying temperature (airT), drying time (dry-
ime) and upper punch force during tabletting (punF) were used
s predictors in model II. The predictors and models are depicted

n Fig. 6.

Using the data from the twelve DoE batches two PLS models
ere developed. The models statistics are listed in Table 5. Leave
ne out cross validation (LOO CV) was used given the limited

ig. 6. Overview of controlled and quality variables used for modelling. The
ontrolled variables are; mixing time of the dry powders (mix), the granulation
iquid flow (gran), the air temperature in the fluid bed (airT), the drying time
n the fluid bed (dryTime) and the average upper punch force during tabletting
punF). The average NIR measurements after various process steps are denoted
IR* 1–4. The quality variable is the mean disintegration time of the final tablets

disT).
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Table 5
Model statistics for PLS models I and II

LV# Model I Model II

Expl. X variation Expl. Y variation RMSEC RMSECV Expl. X variation Expl. Y variation RMSEC RMSECV

1 26.7 61.5 28.7 47.2 22.8 85.4 17.7 35.0
2 51.5 66.1 27.0 50.4 35.4 92.4 12.8 35.5
3 73.3 67.3 26.5 55.8 50.9 96.5 8.7 38.1
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4 81.5 67.4 26.5 60.1
5 100.0 67.4 26.4 60.6
6

umber of data points. The root mean squared error obtained
rom cross-validation (RMSECV) of model II was 35.0 with
ne latent variable (LV) and 85.4% of the Y variation explained
ompared to 61.5% for model I. So by adding more process
nformation the prediction error decreased and a better model
as established. The prediction error of model II was also close

o the standard deviation for the reference analysis (approxi-
ately 30 s) so it might be difficult to improve the model further

sing the existing data. For both models only one PLS compo-
ent was used. The b coefficients for the models are displayed
n Figs. 9 and 11.

The measured versus predicted mean disintegration time for
odel II is depicted in Fig. 7. The prediction error was in some

ases high which might be owed to the relative high standard
eviation of the mean disintegration time. Secondly is the refer-
nce analysis performed on only a fraction of the total number
f tablets produced in each batch. Generally, a larger number
f batches and tablets pr batch should be used and secondly
he experimental design space extended further in order to find

larger range of disintegration times. It is assumed that the
orrelation between the disintegration time and model predic-
ions could then be improved. Also maybe the addition of other

redictors e.g. raw material attributes could improve model pre-
ictions.

With the models, suggestions for feed forward process control
an now be derived.

ig. 7. Measured vs. predicted mean disintegration time for PLS model II. The
alues from calibration are symbolized with circles and the values from LOO
V are symbolized with stars. The dotted line symbolizes perfect fit.
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64.3 98.2 6.2 34.9
76.5 98.8 5.0 33.8
86.0 99.3 3.8 33.5

In Fig. 8 this is demonstrated with model I. Model I can be
sed by the operator just before the granulation is started and the
perator wants to know how to set the granulation liquid flow. By
sing the mixing times and NIR measurements from the DoE
atches and then inserting hypothetical values for granulation
iquid flow from 30 to 90 ml/min, hypothetical mean disintegra-
ion times were then predicted with model I. The results showed
hat by increasing the granulation liquid flow the disintegration
ime would decrease. This could of course have been directly
btained from the negative b coefficient for granulation liquid
ow and with model I the effect can be quantified.

With the model, the operator now has a process control tool
o set the granulation liquid flow after the mixing step in order
o control disintegration time (Fig. 9).

Before the operator starts the tabletting model II can be used
o set the required upper punch force, in order to achieve a certain

ean disintegration time of the final tablets. This was demon-
trated by inserting different values for punch force in model
I. The resulting predicted disintegration times are depicted in
ig. 10.

The results from this example are only indicative since more
ata should be available for a thorough treatment. Neverthe-

ess does the example serve to demonstrate how to develop
eed forward process control tools with regression models. The
orrelation between process variables and the final quality char-
cteristic was illustrated by the b coefficients which showed ‘in

ig. 8. Process control chart for setting of granulation liquid flow using model I
t the first decision point. The DoE batches with mix time 1 min are symbolized
ith stars, 2.5 min are symbolized with triangles and 4 min with circles.
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Fig. 9. The b coefficients for PLS model I.

hich way to turn the knob’ in order to force the direction of the
uality parameter. The regression models could then be used to
uantify the effect of ‘the turn’. The results demonstrated how
o get control capability.

.4. Example 4: regression model B.3 (final quality
redictions)

The most important quality characteristics for the customer
re these of the final drug product. Measurements of final quality
haracteristics when the drug product leaves the manufacturing
ine in real-time or near real time would be an example of RTR
Fig. 11).

The content of active pharmaceutical ingredient (API) in the
nal tablets is a major quality parameter. Traditional quality
ontrol is performed on a small set of tablets i.e. 10 to 30 tablets

n distant laboratories using time consuming analysis methods
.g. HPLC. This means that the batch is quarantined for 2–3
eeks before the analysis result is ready and the batch can be

eleased to market. Secondly by only analyzing a small number

ig. 10. Predicted mean disintegration time as a function of various hypothet-
cal upper punch force values (punF) for the twelve DoE batches. The batches
ith gran = 30 ml/min are symbolized with stars, 60 ml/min are symbolized with

riangles and 90 ml/min symbolized with circles.
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Fig. 11. The b coefficients for PLS model II.

f samples there is an increased risk that quality defects are not
etected.

As an example of near real time quality control of the API
ontent in individual tablets, a regression model was developed
etween NIR transmission spectra of the final tablets (NIR5)
nd the API content. For each of the six calibration batches
Table 3) one calibration spectrum was made by averaging of
20 measured tablet spectra from each calibration batch. Then
ach calibration spectrum was assigned a reference value which
as the average API content in the corresponding calibration
atch and finally a regression model was build between the
verage calibration spectra and their reference values (which
ere was of course the weighing of the different compounds).
his calibration method does not rely on reference analysis and

he assumption for using this method is that by measuring a
arge number of samples from a batch the average content in all
amples approach the average content of the entire batch.

A PLS regression model with one PLS component was con-

tructed. A very low RMSECV of 0.066 and a correlation
oefficient of 0.9999 were obtained. Fig. 12 shows the cross-
alidated predictions of mg API/tablets. By visual inspection of

ig. 12. PLS model with one component using the wavelength region from 7500
o 12,500 cm−1. The predicted values from cross validation, of the calibration
pectra vs. their reference values. The R2 is 0.9999; the RMSECV is 0.066 which
s 0.3%.
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Table 6
Assay predictions (mg API/tablet) for 12 DoE batches

DoE # Mean Variance

Start Mid End Start Mid End

1 19.2 19.2 19.1 0.03 0.02 0.03
2 19.4 19.4 19.4 0.03 0.02 0.02
3 19.6 19.5 19.6 0.03 0.03 0.04
4 19.6 19.6 19.6 0.03 0.03 0.02
5 19.6 19.7 19.8 0.04 0.02 0.04
6 19.5 19.5 19.5 0.03 0.04 0.02
7 19.8 19.5 19.5 0.05 0.06 0.02
8 19.6 19.6 19.5 0.02 0.02 0.03
9 19.4 19.4 19.5 0.04 0.02 0.01

10 19.6 19.7 19.6 0.02 0.03 0.01
11 19.6 19.5 19.4 0.02 0.03 0.03
1
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2 19.5 19.6 19.5 0.02 0.04 0.03

he mean and variance are calculated for 30 tablets from the start, mid and end
f tabletting process. The target content is 19.7 mg API/tablet.

he regression vector, the pre-processed calibration spectra and
he pure API spectrum it was evident that it was the variation of
he API that was modelled.

From each of the DoE batches 90 tablets were measured with
ransmission NIR. The 90 tablets were removed from the tablet-
ing process in the following way; 30 tablets from the start, 30
ablets from the mid and 30 tablets from the end of the tabletting
rocess. With the PLS model the assay (mg/tablet) was predicted
n all tablet samples. The average and variance of the 30 assay
redictions from the start, mid and end are listed for all DoE
atches (Table 6). It was discovered that there was very little
ariation in the API content.

Though the API content was not varying much, few batches
howed some variation in the API content. As an example the
ssay content of the 90 tablets from DoE batch #7 is depicted in
ig. 13. It was discovered that there was generally more API in

he tablets in the beginning of the tabletting process compared

o the mid and end of the process. Also the variance was higher
n the start of the process. This behaviour would be difficult to
dentify and control if only a few samples were analyzed using
lassical methods. The reason for the changes in API content

ig. 13. Ninety assay predictions from DoE batch no. 7, 30 from start (star),
id (triangle) and end (circle), respectively. The average API content was higher

n the first part of the tabletting compared to the mid and end of the tabletting
rocess.
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uring the tabletting process could be explained by a mild seg-
egation of the powder granules when flowing into the tabletting
achine.
The last example showed how RTR capability of the tablets

ould be achieved. Secondly, by analyzing a large number of
amples trends in the process were discovered. This would be
ifficult using classical sampling schemes were only a few sam-
les are analyzed.

. Conclusions

An approach to RTR has been shown in this paper. Start-
ng with the three levels of capability, each process step can
e evaluated for its appropriateness in the RTR system. For
pharmaceutical tabletting process, examples for monitoring

apability, control capability and RTR capability are provided.
ifferent types of models are used to provide early warnings of

uture manufacturing problems.
Four different models were demonstrated using NIR and

rocess data. First a MSPC model of NIR spectra from the
ranulation step, demonstrated how an early warning of future
anufacturing problems could be given. In the second exam-

le (local quality predictions) a quantitative NIR model for
n-line prediction of loss-on-drying in the drying process was
emonstrated. The example showed monitoring capability and
uggestion for process control was discussed.

For an RTR system it is important that the manufacturing
rocess and process control can minimize the effect of input
ariation to the process that affects the final quality. In the third
xample (forecasting final quality and process control) it was
ried out to establish process control models and forecast the
isintegration time of the final tablets.

The last regression example (final quality predictions)
emonstrated how the API content in individual tablets can be
etermined with transmission NIR which can be applied at-line
he tabletting process.
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